| |
Voronoi Diagrams of the Ulam Prime Spiral
The table below shows information about the Voronoi Cells of the Ulam Prime Spiral, for all primes
less than 100. If you aren't sure what that means, check out the explanation on the main page on this topic.
| p | "Centre" | #Vertices | Vertex List | Area | Perimeter |
| 2 | (1,0) | 5 | | ( | 3 2
| , | 1 2
| ) | , | ( | 3 2
| , | - | 3 2
| ) | , | ( | 1 6
| , | - | 5 6
| ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | 0 | , | 1 2
| ) |
| | |
| 3 | (1,1) | 5 | | ( | 0 | , | 1 2
| ) | , | ( | 3 2
| , | 1 2
| ) | , | ( | 2 | , | 1 | ) | , | ( | 1 2
| , | 5 2
| ) | , | ( | 0 | , | 7 3
| ) |
| | |
| 5 | (-1,1) | 6 | | ( | - | 2 | , | 1 | ) | , | ( | - | 1 | , | 0 | ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | 0 | , | 1 2
| ) | , | ( | 0 | , | 7 3
| ) | , | ( | - | 1 2
| , | 5 2
| ) |
| | |
| 7 | (-1,-1) | 6 | | ( | - | 2 | , | - | 1 | ) | , | ( | - | 2 | , | - | 2 | ) | , | ( | - | 3 2
| , | - | 5 2
| ) | , | ( | 1 6
| , | - | 5 6
| ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | - | 1 | , | 0 | ) |
| | |
| 11 | (2,0) | 5 | | ( | 3 2
| , | 1 2
| ) | , | ( | 3 2
| , | - | 3 2
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 3 | , | 0 | ) | , | ( | 2 | , | 1 | ) |
| | |
| 13 | (2,2) | 5 | | ( | 2 | , | 1 | ) | , | ( | 1 2
| , | 5 2
| ) | , | ( | 1 | , | 3 | ) | , | ( | 2 | , | 3 | ) | , | ( | 3 | , | 2 | ) |
| | |
| 17 | (-2,2) | 5 | | ( | - | 3 | , | 2 | ) | , | ( | - | 3 | , | 1 | ) | , | ( | - | 2 | , | 1 | ) | , | ( | - | 1 2
| , | 5 2
| ) | , | ( | - | 3 2
| , | 7 2
| ) |
| | |
| 19 | (-2,0) | 5 | | ( | - | 2 | , | - | 1 | ) | , | ( | - | 7 2
| , | 1 2
| ) | , | ( | - | 3 | , | 1 | ) | , | ( | - | 2 | , | 1 | ) | , | ( | - | 1 | , | 0 | ) |
| | |
| 23 | (0,-2) | 4 | | ( | 1 6
| , | - | 5 6
| ) | , | ( | - | 3 2
| , | - | 5 2
| ) | , | ( | - | 1 | , | - | 4 | ) | , | ( | 3 2
| , | - | 3 2
| ) |
| | |
| 29 | (3,1) | 5 | | ( | 2 | , | 1 | ) | , | ( | 3 | , | 0 | ) | , | ( | 9 2
| , | 3 2
| ) | , | ( | 4 | , | 2 | ) | , | ( | 3 | , | 2 | ) |
| | |
| 31 | (3,3) | 4 | | ( | 2 | , | 3 | ) | , | ( | 3 | , | 2 | ) | , | ( | 4 | , | 2 | ) | , | ( | 4 | , | 5 | ) |
| | |
| 37 | (-3,3) | 5 | | ( | - | 4 | , | 3 | ) | , | ( | - | 4 | , | 4 | ) | , | ( | - | 3 | , | 5 | ) | , | ( | - | 3 2
| , | 7 2
| ) | , | ( | - | 3 | , | 2 | ) |
| | |
| 41 | (-3,-1) | 6 | | ( | - | 4 | , | - | 1 | ) | , | ( | - | 4 | , | 1 3
| ) | , | ( | - | 7 2
| , | 1 2
| ) | , | ( | - | 2 | , | - | 1 | ) | , | ( | - | 2 | , | - | 2 | ) | , | ( | - | 3 | , | - | 2 | ) |
| | |
| 43 | (-3,-3) | 6 | | ( | - | 4 | , | - | 3 | ) | , | ( | - | 3 | , | - | 4 | ) | , | ( | - | 1 | , | - | 4 | ) | , | ( | - | 3 2
| , | - | 5 2
| ) | , | ( | - | 2 | , | - | 2 | ) | , | ( | - | 3 | , | - | 2 | ) |
| | |
| 47 | (1,-3) | 4 | | ( | 3 2
| , | - | 3 2
| ) | , | ( | - | 1 | , | - | 4 | ) | , | ( | 1 2
| , | - | 9 2
| ) | , | ( | 3 | , | - | 2 | ) |
| | |
| 53 | (4,0) | 5 | | ( | 3 | , | 0 | ) | , | ( | 3 | , | - | 2 | ) | , | ( | 5 | , | - | 4 3
| ) | , | ( | 5 | , | 4 3
| ) | , | ( | 9 2
| , | 3 2
| ) |
| | |
| 59 | (2,4) | 4 | | ( | 1 | , | 3 | ) | , | ( | 1 | , | 5 | ) | , | ( | 4 | , | 5 | ) | , | ( | 2 | , | 3 | ) |
| | |
| 61 | (0,4) | 7 | | ( | 0 | , | 5 | ) | , | ( | - | 3 2
| , | 7 2
| ) | , | ( | - | 1 2
| , | 5 2
| ) | , | ( | 0 | , | 7 3
| ) | , | ( | 1 2
| , | 5 2
| ) | , | ( | 1 | , | 3 | ) | , | ( | 1 | , | 5 | ) |
| | |
| 67 | (-4,2) | 8 | | ( | - | 5 | , | 2 | ) | , | ( | - | 5 | , | 1 | ) | , | ( | - | 9 2
| , | 1 2
| ) | , | ( | - | 4 | , | 1 3
| ) | , | ( | - | 7 2
| , | 1 2
| ) | , | ( | - | 3 | , | 1 | ) | , | ( | - | 3 | , | 2 | ) | , | ( | - | 4 | , | 3 | ) |
| | |
| 71 | (-4,-2) | 4 | | ( | - | 5 | , | - | 2 | ) | , | ( | - | 4 | , | - | 3 | ) | , | ( | - | 3 | , | - | 2 | ) | , | ( | - | 4 | , | - | 1 | ) |
| | |
| 73 | (-4,-4) | 4 | | ( | - | 4 | , | - | 3 | ) | , | ( | - | 11 2
| , | - | 9 2
| ) | , | ( | - | 9 2
| , | - | 11 2
| ) | , | ( | - | 3 | , | - | 4 | ) |
| | |
| 79 | (2,-4) | 4 | | ( | 1 2
| , | - | 9 2
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 15 4
| , | - | 17 4
| ) | , | ( | 2 | , | - | 6 | ) |
| | |
| 83 | (5,-3) | 5 | | ( | 6 | , | - | 5 3
| ) | , | ( | 6 | , | - | 5 | ) | , | ( | 15 4
| , | - | 17 4
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 5 | , | - | 4 3
| ) |
| | |
| 89 | (5,3) | 6 | | ( | 4 | , | 5 | ) | , | ( | 4 | , | 2 | ) | , | ( | 9 2
| , | 3 2
| ) | , | ( | 5 | , | 4 3
| ) | , | ( | 6 | , | 5 3
| ) | , | ( | 6 | , | 3 | ) |
| | |
| 97 | (-1,5) | 5 | | ( | 0 | , | 5 | ) | , | ( | - | 3 2
| , | 7 2
| ) | , | ( | - | 3 | , | 5 | ) | , | ( | - | 2 | , | 6 | ) | , | ( | - | 1 | , | 6 | ) |
| | |
Want more? I have information for all primes less than 1000 here!
|